Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542871

RESUMO

Magnesium-sulfur batteries are an emerging technology. With their elevated theoretical energy density, enhanced safety, and cost-efficiency, they have the ability to transform the energy storage market. This review investigates the obstacles and progress made in the field of electrolytes which are especially designed for magnesium-sulfur batteries. The primary focus of the review lies in identifying electrolytes that can facilitate the reversible electroplating and stripping of Mg2+ ions whilst maintaining compatibility with sulfur cathodes and other battery components. The review also addresses the critical issue of managing the shuttle effect on soluble magnesium polysulfide by looking at the innovative engineering methods used at the sulfur cathode's interface and in the microstructure design, both of which can enhance the reaction kinetics and overall battery efficiency. This review emphasizes the significance of reaction mechanism analysis from the recent studies on magnesium-sulfur batteries. Through analysis of the insights proposed in the latest literature, this review identifies the gaps in the current research and suggests future directions which can enhance the electrochemical performance of Mg-S batteries. Our analysis highlights the importance of innovative electrolyte solutions and provides a deeper understanding of the reaction mechanisms in order to overcome the existing barriers and pave the way for the practical application of Mg-S battery technology.

2.
ACS Appl Mater Interfaces ; 16(11): 13786-13794, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446136

RESUMO

PEO-LiX solid polymer electrolyte (SPE) with the addition of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) fillers is considered as a promising solid-state electrolyte for solid-state Li-ion batteries. However, the developments of the SPE have caused additional challenges, such as poor contact interface and SPE/Li interface stability during cycling, which always lead to potentially catastrophic battery failure. The main problem is that the real impact of LLZTO fillers on the interfacial properties between SPE and Li metal is still unclear. Herein, we combined the electrochemical measurement and in situ synchrotron-based X-ray absorption near-edge structure (XANES) imaging technology to study the role of LLZTO fillers in directing SPE/Li interface electrochemical performance. In situ XRF-XANES mapping during cycling showed that addition of an appropriate amount of LLZTO fillers (50 wt %) can improve the interfacial contact and stability between SPE and Li metal without reacting with the PEO and Li salts. Additionally, it also demonstrated the beneficial effect of LLZTO particles for suppressing the interface reactions between the Li metal and PEO-LiTFSI SPE and further inhibiting Li-metal dendrite growth. The Li|LiFePO4 batteries deliver long cycling for over 700 cycles with a low-capacity fade rate of 0.08% per cycle at a rate of 0.3C, revealing tremendous potential in promoting the large-scale application of future solid-state Li-ion batteries.

3.
Mater Horiz ; 10(11): 4686-4709, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37593917

RESUMO

Li-ion batteries have been widely applied in the field of energy storage due to their high energy density and environment friendliness. Owing to their high capacity of ∼200 mA h g-1 and high cutoff voltage of ∼4.6 V vs. Li+/Li, layered lithium transition metal oxides (LLMOs) stand out among the numerous cathode materials. However, the oxygen loss of LLMO cathodes during cycling hampers the further development LLMO cathode-based Li-ion batteries by inducing a dramatic decay of electrochemical performance and safety issues. In this regard, the oxygen loss phenomenon of LLMO cathodes has attracted attention, and extensive efforts have been devoted to investigating the origins of oxygen loss in LLMO cathodes by various characterization methods. In this review, a comprehensive overview of the main causes of oxygen loss is presented, including the state of charge, side reactions with electrolytes, and the thermal instability of LLMO cathodes. The characterization methods used in the scope are introduced and summarized based on their functional principles. It is hoped that the review can inspire a deeper consideration of the utilization of characterization techniques in detecting the oxygen loss of LLMO cathodes, paving a new pathway for developing advanced LLMO cathodes with better cycling stability and practical capabilities.

4.
Small Methods ; 5(5): e2001193, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34928101

RESUMO

Rechargeable Mg/S batteries have the potential to provide a compelling battery for a range of applications owing to their high capacity and gravimetric energy density, safety, and low-cost construction. However, the Mg/S energy storage is not widely developed and deployed due to technical challenges, which include short cycle lifespan and lack of suitable electrolyte. To study the microstructure degradation of Mg/S batteries, multiscale X-ray tomography, an inherently nondestructive method, is performed on dismantled Swagelok Mg/S cells comprising a graphene-sulfur cathode and a super-P separator. For the first time, 3D microstructure visualization and quantification reveal the dissolution (volume fraction decreases from 13.5% to 0.7%, surface area reduces from 2.91 to 1.74 µm2 µm-3 ) and agglomeration of sulfur particles, and the carbon binder densification after 10 cycles. Using tomography data, the image-based simulations are then performed. The results show that the insoluble polysulfides can inevitably block the Mg2+ transportation via shuttle effect. The representative volume should exceed 8200 µm3 to represent bulk cathode. This work elucidates that the Mg/S cell performance is significantly affected by microstructural degradation, and moreover demonstrates how multiscale and multimodal characterization can play an indispensable role in developing and optimizing the Mg/S electrode design.

5.
Small ; 15(50): e1902377, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31721414

RESUMO

Lithium sulfide (Li2 S) is a promising cathode material with high capacity, which can be paired with nonlithium metal anodes such as silicon or tin so that the safety issues caused by the Li anode can be effectively avoided. However, the Li2 S full cell suffers from rapid capacity degradation due to the dissolution of intermediate polysulfides. Herein, a Li2 S/Si full cell is designed with a Li2 S cathode incorporated by titanium nitride (TiN) polysulfide immobilizer within parallel hollow carbon (PHC). This full cell delivers a high initial reversible capacity of 702 mAh gLi2S -1 (1007 mAh gsulfur -1 ) at 0.5 C rate and excellent cyclability with only 0.4% capacity fade per cycle over 200 cycles. The long cycle stability is ascribed to the strong polysulfide anchor effect of TiN and highly efficient electron/ion transport within the interconnected web-like architecture of PHC. Theoretical calculations, self-discharge measurements, and anode stability experiments further confirm the strong adsorption of polysulfides on the TiN surface. The present work demonstrates that the flexible Li2 S cathode and paired Si anode can be used to achieve highly efficient Li-S full cells.

6.
Nat Commun ; 10(1): 1021, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833552

RESUMO

Sulfurized polyacrylonitrile is suggested to contain Sn (n ≤ 4) and shows good electrochemical performance in carbonate electrolytes for lithium sulfur batteries. However inferior results in ether electrolytes suggest that high solubility of Li2Sn (n ≤ 4) trumps the limited redox conversion, leading to dissolution and shuttling. Here, we introduce a small amount of selenium in sulfurized polyacrylonitrile to accelerate the redox conversion, delivering excellent performance in both carbonate and ether electrolytes, including high reversible capacity (1300 mA h g-1 at 0.2 A g-1), 84% active material utilization and high rate (capacity up to 900 mA h g-1 at 10 A g-1). These cathodes can undergo 800 cycles with nearly 100% Coulombic efficiency and ultralow 0.029% capacity decay per cycle. Polysulfide dissolution is successfully suppressed by enhanced reaction kinetics. This work demonstrates an ether compatible sulfur cathode involving intermediate Li2Sn (n ≤ 4), attractive rate and cycling performance, and a promising solution towards applicable lithium-sulfur batteries.

7.
ACS Appl Mater Interfaces ; 10(44): 37955-37962, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360064

RESUMO

It is a tough issue to achieve high electrochemical performance and high sulfur loading simultaneously, which is of important significance for practical Li-S batteries applications. Inspired by the transportation system of the plant root in nature, a biomimetic root-like carbon/titanium nitride (TiN/C) composite nanofiber is designed as a freestanding current collector for the high sulfur loading cathode. Like the plant root which absorbs water and oxygen from soil and transfers them to the trunk and branches, the root-like TiN/C matrix provides high-efficiency polysulfide, electron, and electrolyte transfer for the redox reactions via its three-dimensional-porous interconnected structure. In the meantime, TiN can not only anchor the polysulfides via the polar Ti-S and N-S bond but also further facilitate the redox reaction because of its high catalytic effect. With 4 mg cm-2 sulfur loading, the TiN/C@S cathode delivers a high initial discharge capacity of 983 mA h g-1 at 0.2 C current density; after 300 charge/discharge cycles, the discharge capacity remains 685 mA h g-1, corresponding to a capacity decay rate of ∼0.1%. Even when the sulfur loading is increased to 10.5 mg cm-2, the cell still delivers a high capacity of 790 mA h g-1 and a decent cycle life. We believe that this novel biomimetic root-like structure can provide some inspiration for the rational structure design of the high-energy lithium-sulfur batteries and other composite electrode materials.

8.
ACS Appl Mater Interfaces ; 10(16): 13406-13412, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29608048

RESUMO

Free-standing paper cathodes with layer-by-layer structure are synthesized for high-loading lithium-sulfur (Li-S) battery. Sulfur is loaded in a three-dimensional (3D) interconnected nitrogen-doped carbon nanofiber (CNF) framework impregnated with Mn3O4 nanoparticles. The 3D interconnected CNF framework creates an architecture with outstanding mechanical properties. Synergetic effects generated from physical and chemical entrapment could effectively suppress the dissolution and diffusion of the polysulfides. Electrochemical measurements suggest that the rationally designed structure endows the electrode with high utilization of sulfur and good cycle performance. Specifically, the cathode with a high areal sulfur loading of 11 mg cm-2 exhibits a reversible areal capacity over 8 mAh cm-2. The fabrication procedure is of low cost and readily scalable. We believe that this work will provide a promising choice for potential practical applications.

9.
Adv Sci (Weinh) ; 4(6): 1600500, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28638784

RESUMO

Oxygen-rich carbon material is successfully fabricated from a porous carbon and evaluated as anode for sodium-ion battery. With the strategy of optimal combination of fast surface redox reaction and reversible intercalation, the oxygen-rich carbon anode exhibits a large reversible capacity (447 mAh g-1 at 0.2 A g-1), high rate capability (172 mAh g-1 at 20 A g-1), and excellent cycling stability.

10.
Nanoscale ; 8(28): 13638-45, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27364768

RESUMO

The ithium-sulfur battery stands as one of the most promising successors of traditional lithium-ion batteries due to its super high theoretical energy density, but practical application still suffers from the shuttle effect arising from soluble intermediate polysulfides. Here, we report SnO2 as a chemical adsorbent for polysulfides. As an interlayer between the cathode and separator, SnO2 gives better results to prevent the polysulfides from diffusing to the lithium anode than as a modifier of the carbon matrix directly. The lithium-sulfur battery with an SnO2 interlayer delivers an initial reversible capacity of 996 mA h g(-1) and retains 832 mA h g(-1) at the 100(th) discharge at 0.5 C, with a fading rate of only 0.19% per cycle. The improvements benefit from the quasi-open space provided by the interlayer configuration for the diffused sulfur species, which can largely relieve the loss of active substances caused by the volume effect during the lithiation/delithiation process.

11.
Phys Chem Chem Phys ; 12(15): 3780-7, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20358072

RESUMO

IR-transparent chalcogenide glass-ceramics were fabricated through a careful ceramization process of the as-prepared 65 GeS(2) x 25 Ga(2)S(3) x 10 LiI glasses at a temperature of 403 degrees C for various durations. Owing to the precipitation of Li(x)Ga(y)S(z) crystals with a Ga(2)S(3)-like structure, clear second-harmonic generation was observed in the sample crystallized at 403 degrees C for 60 h, which has a greatly improved resistance to environmental impairment. Additionally, it is found that the shorter crystallization process (< or = 60 h) contributed to the enhancement of Li(+) ionic conductivity, whereas a longer heat-treatment (80 h) would impair that of the glass-ceramics. The micro-structural origin of these varied properties was elucidated in detail. The corresponding results will be of benefit for the optimization of designed transparent chalcogenide glass-ceramics with improved thermo-mechanical properties, a permanent second-order optical nonlinearity, or a well-enhanced ionic conductivity for application in amorphous solid electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...